SOLVING HEAT CONDUCTION PROBLEMS BY THE
STRAIGHT~-LINES METHOD

V. T. Ivanov UDC 536.201

Boundary problems relating to the heat conduction equation are solved by the straight-lines
method with spatial quantization,

The straight-lines method [2] was used in [1] for integrating equation
wy=u, + f(x, t)
with various boundary and initial conditions, and with numerical results also shown.

In this article the straight-lines method will be applied to the solution of boundary problems relating
to the heat conduction equation with variable coefficients which depend on the space variable,

Let the heat conduction equation be given for the interval 0 < x < b

d
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p>0, £(® >0, 909> 0,

with the boundary conditions
(0, ) =@, (), u(b, H =9, (), 0<ILT, @)

and with the initial condition
ulx, 0) =% ), 0<x <o @)

When the interval [0, b] is broken down into n + 1 arbitrary sections by straight-lines x = x; (i =1, 2,

. .., n) in steps of hj = xj ~xj . ;, and when the derivatives with respect to x are approximated by the dif~-
ference expressions [3], we will obtain a system of ordinary differential equations

du; _ i itz (Uyq —t5) - iy (th; — t4;5) ] . )
brgp = % [ By B gt +1: () 4)

14

=12, ..., n),
thy =@y () Unry =@ (1), 0T,
with the initial conditions

w(O)=g, i=1,2 ...,n). ®)

Here hj = 0.5 (hj +hj +4), ki +1/s = ki +0.5h44), ki_1/2 =k (xi = 0.5 hj), and uj = uj(t) is the approximate
solution of problem (1), (2), (3) on the straight-line x = x;.

The problem (4), (5) will now be stated in vector form:

u' -+ Pu = f(t), 4{0)=1, (6)

where
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The matrix P appears to be a Jacobian [4], it has real and different eigenvalues, so that it may be
written down as

P = GAG,
where A is the diagonal n~th order matrix whose elements are the eigenvalues of matrix P.
If we designate
U=Gu, F(t) =Gf (1), ¥ =Gy )
and multiply on the left hand side of (6) by the matrix G, we will have
U +AU=F@), UQ="1. (8)

The spectrum of matrix P is determined from the characteristic polynomial, an expansion based on
the following recurrence formulas: ’

D,(d) =1, D;(M)=a,—),
D;(\) = (a,—2) Disy (M) —b;46; Dyy (M) )
(f=2,3,...,n).
The transformation matrix G™! may embody the linearly independent eigenvectors (column vectors)
of matrix P

X, == (X5 Xags oor Xigo oo Xng) (=1, 2, ..., 1),
which correspond to the various eigenvalues g,

The following explicit relation applies to the i~th component of the eigenvector which belongs to the
eigenvalue Ag

B = LT b7 s b Dy ) G s=1, 2, ..., 1), (10)
Let us now consider the matrix P'. Itis quite evident that its characteristic polynomial represents an
expansion based also on the recurrence formulas (9), while its eigenvectors are calculated by the formula
Y=l & o Dy () (5, i=1, 2, ..., n). 11)
The orthogonality relation for the eigenvectors of matrices P and P' holds true

0 if [<=s,

Xyl T+ Xollys + o0+ Xplin = lilfd. if  {=s
sY %D :

Assuming Ig =1 and 7j = 1/d;, we obtain orthonormalized systems of vectors Xg and Yj.
The matrix constructed with eigenvectors (row vectors) Yj of matrix P' will be the sought matrix G.

The problem (6) stated in the canonical form (8) is
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Ui+ 20U, =F,(8), U,0) =¥, (=12 ... n).
In this way we will have n independent Cauchy problems for first-order equations, The solutions to
these problems are
t
U, () = ¥, exp (— A1) + j expl—X(—DF(@dt (=12 ...,n),

0

where

Foty= X dit[f,0at o o7 Do ()] —d7 [e,0, () + b (O 2™ -+ 67 Dpey (B,
s=1

¥, = Z dip ezt e 6 Dy (By).

s=1

Performing the inverse G-transformation will yield the solution of problem (4), (5):

n i
u () = [ Waexp (— Ay ) + | exp[— hy (¢ — D] Fy () dt]
k=l 0 (12)

Br e bimi Diy ()

Using the explicit formulas (9), (10) for determining the eigenvectors of matrices P and P! is not ex-
pedient when the value of n is large [5]. The eigenvector which corresponds to the eigenvalue ag can be
found easily by solving the respective system of equations, The appearance of matrices P and P' indicates
that the first and the last equation of this system contain two unknowns while all the other equations contain
three each. Inasmuch as the eigenvector is determined with an accuracy up to an arbitrary factor, with
the arbitrary first component x5 given it becomes possible to determine all the others by a subsequent
solution of one equation with one unknown,

As expression (12) shows, the solution obtained for problem (1), (2), (3) contains an analytic state-
ment with respect to the variable t, and here this method offers definite advantages over other numerical
methods,

In order to establish whether problem (4), (5) is amenable tc an approximation of the exact solution,
one must find out whether the system of differential-difference equations has a unique and stable solution,

It follows from (12) that a solution to the Cauchy problem (4), (5) exists, if functions f(x, t), ¢;(t),
and ¢,(t) are continuous in the interval [0, T].

We will now establish the uniqueness of the differential-difference equations system, For this purpose
we designate

n n+1 n

(. B) = 2 aBh, (@, Bl = 2 ofih;, (o, B)* = 2 a;f:h;,

=1 =1 =1
21— 2 ‘
G = s = e g =k, o=k,
i i+l
(a2—)= = 1 a %02 — 23— 2
g i+l i .
R R | iy b

In these designations there is implied Green's difference formula for a nonuniform grid [6]:
(. (azx—)); = —(a, yrzz]+ (@zr)n — 4 U 13)

Assuming the existence of two solutions wj, Wy (i=1,2,...,,m)and considering the difference vj
=ugj=—uy (i=1,2,...,n) which satisfies a system of homogeneous equations with homogeneous initial
conditions, we will prove that functions vj(t) are identically equal to zero,

Consider the functional

"t : oL
J (@) =2 2 5 0:Y; hydv + 2 kigij (U, 7. 1) h; + 2 q;0%;. (14)
0 t =1

i=1

i=l1

Differentiating (14) with respect to t, applying formula (13) and homogeneous conditions, we obtain

1289



dJ (@) _ Vi — Y
=2 3 i i e

Uy —— '._ ) , : , v —v , .
— k12 —’—hv—lJ + 4 vi} vy + Znpinly, —— — 2y g L =0,
: 1

n+1

If follows from here that J(t) = ¢; = const and, since J(0) = 0, that J(t) = 0, This is equivalent to the
conditions:

() =0, v,—0,, =0 (=12, ...,n). (15)
Taking into account (15) and homogeneous initial conditions, it is easy to show that v;(t) = const =0
i=1,2,...,n).
Let
pU)>me>0, k() >m>0, q(x)>0, hy=max h,

I<i<n

ky= max |k(x)|, k, = max |k (x)|, k, = max |k"(x)|,
x¢lo, 6] xefo, b]

xelo, 8]
A =max |u,t, x)}, Ay=max|u(x, )], Ay=max|u (x, )|
xel0, b1, telo, T1 xelo, b, telo, T1 xelo, 8], l0, T]

The error of the solution can then be estimated, as in [7-9], to be

v ()] < hMl/ (bmrrzxf (=1, 2 ...,m 0<Et<T),
oty

where

: 2
Vi) =u(x, ) —u(t), M=kA + kA + TkoAa-

This estimate determines the convergence of the straight-lines method,

The results shown here can be extended to the heat conduction problem with other linear boundary
conditions, and also to the case of discontinuous coefficients in the equation,

Particularly, the straight-lines method outlined here with a nonuniform step is convenient to use for
problems relating to the propagation of heat through multilayer media,

NOTATION
u is the temperature;
p(x) is the volume heat capacity;
kx) is the heat conductivity;
ax) is the heat transfer coefficient;
fx, ) is the density of heat sources at a point x at an instant of time t;

@1(t), @,(t) are the boundary-value functions;
! is the sign of transposition.
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